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ABSTRACT 40 

Systemic immune function is impaired by sleep restriction.  However, the impact of sleep 41 

restriction on local immune responses, and to what extent any impairment can be mitigated by 42 

nutritional supplementation is unknown.  43 

Objectives: We assessed the effect of 72-h sleep restriction (2-h nightly sleep) on local immune 44 

function and skin barrier restoration of an experimental wound, and determined the influence of 45 

habitual protein intake (1.5 g·kg-1·d-1) supplemented with arginine, glutamine, zinc sulfate, 46 

vitamin C, vitamin D3 and omega-3 fatty acids compared to lower protein intake (0.8 g·kg-1·d-1) 47 

without supplemental nutrients on these outcomes.  Secondary outcomes included sleepiness, 48 

cognition, marksmanship, markers of gut barrier damage, and exploratory analyses to identify 49 

predictors of skin barrier recovery.  50 

Methods: Wounds were created in healthy adults by removing the top layer of ≤ 8 forearm 51 

blisters induced via suction, after adequate sleep (AS) or 48-h of a 72-h sleep restriction period 52 

(SR; 2-h nightly sleep). A subset of participants undergoing sleep restriction received 53 

supplemental nutrients during and after sleep restriction (SR+). Wound fluid was serially 54 

sampled 48-h post-blistering to assess local cytokine responses. Performance on a battery of 55 

cognitive assessment and marksmanship tasks were collected throughout the 72-h sleep 56 

restriction period. 57 

Results: The IL-8 response of wound fluid was higher for AS compared to SR (area-under-the-58 

curve, AUCi (log10), 5.1±0.2 and 4.9±0.2 pg·mL-1, respectively (P=0.03); and, both IL-6 and IL-59 

8 concentrations were higher for SR+ compared to SR (p<0.0001), signifying a potentially 60 

enhanced early wound healing response. Skin barrier recovery was shorter for AS (4.2 ± 0.9 61 

days) compared to SR (5.0 ± 0.9 days) (P=0.02), but did not differ between SR and SR+ 62 



(P=0.18). As expected, participants were tired and experienced cognitive declines in response to 63 

the imposed sleep restriction. In linear regression models adjusting for age, BMI, race, ethnicity, 64 

energy intake and study group, omega-3 intake was associated with longer healing time ([beta ± 65 

SE] per g/d: 0.70 ± 0.33, P=0.04), and protein intake was associated with shorter healing time 66 

(per g/d: -0.02 ± 0.01, P=0.01). AUCi of IL-8 (per logged pg/mL: -1.50 ± 0.43, P<0.001) and 67 

MIP-1b (per logged pg/mL: -1.42 ± 0.50, P=0.01) sampled from the wound sites were associated 68 

with shorter healing time. Participants were also generally slower and less accurate on measures 69 

of cognitive performance and marksmanship. No effects on markers of gut barrier damage were 70 

observed. 71 

Conclusions: Relatively modest sleep disruption induces cognitive declines and delays wound 72 

healing. Supplemental nutrition may mitigate some decrements in local immune responses, 73 

without detectable effects on wound healing rate. Wound healing time may be influenced by 74 

omega-3 and protein intake, as well as wound cytokines (but not serum biomarkers). Additional 75 

research is warranted to further elucidate these findings.  76 

Keywords: sleep deprivation; cytokines; immune function; wound healing; skin barrier 77 

recovery; marksmanship; cognition; gut function; stress; Army; military personnel; first 78 

responders 79 
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INTRODUCTION 95 
 96 

Immune responsiveness is degraded by short-term sleep restriction.  The effect is 97 

mediated by hypothalamic-pituitary-adrenal axis and sympathetic nervous system activation 98 

(35), and characterized in part by decrements in natural killer cell activity and interleukin-2 99 

production and increased levels of circulating proinflammatory cytokines (15, 36, 84). 100 

Collectively these effects are thought to increase risk of illness and infection (15, 63), and impair 101 

wound healing. For example, the risk of acquiring the ‘common cold’ was approximately 4-fold 102 

higher in volunteers who slept less than 6 h per night, compared to those who slept more than 7 h 103 

per night, for seven days (15, 63); and, 42-h total sleep deprivation delayed initial recovery of the 104 

skin barrier following an experimental wound. As such, developing strategies for maintaining 105 

immune function is of interest to populations in which short-term sleep restriction is sometimes 106 

unavoidable, such as military and emergency service personnel.      107 

Optimal immune function is dependent on nutrient availability and underlying nutritional 108 

status (58, 77).  Clinical nutrition support guidelines for adults recommend enteral formulations 109 

containing arginine, glutamine, omega-3 fatty acids, and antioxidants for immune-enhancement 110 

and faster recoveries in patients undergoing major elective surgery (50, 54, 58, 77). For example, 111 

vitamin C plays an important role in collagen synthesis, fibroblast proliferation, capillary 112 

formation and neutrophil activity (76) while omega-3 fatty acids enhance T-cell and natural 113 

killer cell activity, and have been shown to reduce systemic inflammation (12, 60).  Further, 114 

studies indicate that certain nutrients improve wound healing indices in healthy adults (4, 42, 115 

89). For example, arginine contributes to collagen deposition and cellular growth, and impacts 116 

microcirculation by increasing the production of nitric oxide (11, 58, 89), while glutamine 117 

stimulates the proliferation of fibroblasts, subsequently contributing to wound closure (58).  The 118 



efficacy of nutrient interventions for modulating immune function and promoting healing in 119 

healthy individuals who are immune-compromised consequent to physical or cognitive stressors 120 

(e.g., sleep restriction) has received less attention.     121 

The suction blister model is a useful tool for studying immune responsiveness of 122 

populations exposed to a variety of stressors and the efficacy of countermeasures to promote or 123 

enhance recovery. Traditionally, circulating blood-derived markers of immune function have 124 

been assessed to study the systemic immune response (15, 36, 84), but these markers do not fully 125 

characterize functional status (e.g., the ability to heal from a wound or defend against an 126 

infection) (27). In contrast, wound healing models directly assess functional status of the innate 127 

immune system (i.e., the ability to heal from a wound), and can also provide insight into the local 128 

pro-inflammatory response and tissue remodeling processes.  The suction blister model is a 129 

wound healing model that allows study of the functional immune response to include immune 130 

response at a wound site along with skin barrier restoration as a proxy measure of wound healing 131 

rate.  Our group has shown that this method is sufficiently reliable for assessing skin barrier 132 

restoration and local immune responsiveness of experimental skin wounds (72) (i.e., strong 133 

correlations were observed between the left and right arm in terms of skin barrier restoration rate 134 

and local cytokine response). Further, the method has been used in humans to study how stress 135 

affects in-vivo immune responsiveness (27, 39, 66). For example, skin barrier restoration was 136 

delayed by approximately one day following a 30-min adverse social interaction (i.e., verbal 137 

disagreement), compared to a 30-min positive social interaction, with their spouse (39); and, 138 

college examination stress delayed suction blister wound healing time by approximately two 139 

days (66). In addition to demonstrating decrements in the immune response, delayed wound 140 

closure has practical implications, i.e., the potential for infection is heightened while the skin 141 



barrier is perturbed. This is relevant for military trainees, wherein cellulitis and purulent skin 142 

abscesses are a common problem (38). 143 

The primary aims of this study were two-fold.  We first sought to demonstrate that the 144 

suction blister wound model is sensitive enough to detect decrements in local immune response 145 

and skin barrier restoration rate in response to a stress model (i.e., 72-h sleep restriction with 2-h 146 

nightly sleep in a laboratory environment), by examining effects of the stress model on skin 147 

barrier restoration. After successfully demonstrating acceptable sensitivity, we sought to 148 

determine if dietary supplementation with arginine, glutamine, vitamin C, vitamin D, zinc and 149 

omega-3 fatty acids could mitigate decrements in local immune response and skin barrier 150 

restoration. Secondary outcomes included sleepiness, cognition, markers of gut barrier damage, 151 

and an exploratory analyses to identify predictors of skin barrier recovery. We hypothesized that 152 

immune responses would be degraded, and skin barrier recovery would be delayed in 153 

participants following sleep restriction compared to free-living participants who were adequately 154 

rested. We further hypothesized that immune function would be preserved and skin barrier 155 

recovery would be shorter in participants who consumed 1.5 g protein per kg body weight (i.e., 156 

the higher end of the military dietary reference intake (MDRI), which was consistent with 157 

participants’ habitual protein intake) and a twice-daily, multi-nutrient beverage during and after 158 

sleep restriction compared to participants who received a placebo beverage and 0.8 g protein per 159 

kg body weight (i.e., the low end of the MDRI). As a secondary objective, we examined the 160 

effects of sleep restriction on cognitive measures of attention and memory as well as 161 

marksmanship measures that included a friend-foe decision making task.  Finally, a pilot study 162 

was conducted to identify associations between sleep restriction and markers of gut barrier 163 



damage, and to determine the influence of multi-nutrient supplementation on gut barrier damage 164 

during sleep restriction. 165 

MATERIALS AND METHODS 166 

Study Design  167 

This was a two-phase study. Phase 1 determined the effect of sleep restriction and 168 

controlled living conditions (i.e., residing in the laboratory) on local immune responses and skin 169 

barrier restoration.  Phase 2 determined the effect of a nutrition intervention on local immune 170 

response and skin barrier restoration in response to sleep restriction under controlled living 171 

conditions. In phase 1, impact of short-term sleep restriction (i.e., ~72 hours of sleep restriction 172 

with 2-h sleep per night in a laboratory environment) on skin barrier restoration and immune 173 

response at the wound site was assessed by comparing free-living participants with adequate 174 

sleep (AS) to a group of sleep restricted participants who resided in the laboratory during the 175 

sleep restriction period (SR) (Figure 1). In phase 2, we determined if a diet providing 1.5 g 176 

protein per kg body weight combined with a multi-nutrient supplement during and after sleep 177 

restriction (SR+) attenuated the decrements in local immune function and skin barrier restoration 178 

observed in response to sleep restriction when compared with a diet providing 0.8 g protein per 179 

kg body weight combined with a placebo beverage (SR) (Figure 1). Dietary protein levels were 180 

selected to represent the lower and higher ends of the MDRIs (0.8-1.6 g protein per kg body 181 

weight per day)(82), and the higher-level of 1.5 g protein per kg body weight per day was 182 

consistent with participants’ reported habitual protein intakes. Blisters were applied to all three 183 

study groups (AS, SR and SR+), and the main measures of immune function included skin 184 

barrier restoration (measured by skin vapor permeability) and wound inflammatory responses.   185 

Participants 186 



Participants were military and civilian personnel assigned to Natick Soldier Systems 187 

Center, Natick, MA.  Eighty-five percent (n = 56) of the 66 participants who began the study 188 

completed data collection and were included in the data analyses (AS, n = 16; SR, n = 20; and, 189 

SR, n = 20).  One participant withdrew prior to study participation due to scheduling conflicts, 190 

seven volunteers withdrew during baseline testing (i.e., n = 3 due to relocation from the 191 

geographical area; and, n = 4 due to non-compliance with the sleep requirements leading up to 192 

the sleep restriction period), and three participants left the study during the sleep restriction 193 

period (i.e., SR, n = 2 due to gastrointestinal virus or migraine; and, SR+, n = 1 due to inability 194 

to stay awake).  195 

Data collection occurred from September 2012 to May 2016 at the U.S. Army Research 196 

Institute of Environmental Medicine (Natick, MA). Each volunteer gave their written, informed 197 

consent after an oral explanation of the study.  Individuals were included if they were between 198 

the ages of 19 and 35 years, were generally healthy and not taking medications (including non-199 

steroidal anti-inflammatory drugs and aspirin), were not pregnant or lactating, had no history of 200 

psychiatric disorder requiring hospitalization or psychiatric medication usage, and slept between 201 

7 and 9 hours per night at least five days per week. All subjects completed an initial screening 202 

and were medically cleared for participation.  The study was approved by the Institutional 203 

Review Board, United States Army Research Institute of Environmental Medicine, Natick, MA. 204 

The investigators adhered to the policies for protection of human subjects as prescribed DOD 205 

Instruction 3216.02 and the research was conducted in adherence with the provisions of 32 CFR 206 

Part 219.  The Clinicaltrials.gov identifier is NCT02053506. 207 

Research procedures applicable to all experimental groups (AS, SR & SR+) 208 

 209 

Assessment of General Sleep Patterns 210 

 211 



 Participants confirmed that they regularly slept 7-9 hours per night prior to the baseline 212 

testing period.  General sleep patterns were assessed during the baseline testing period via the 213 

Morningness/Eveningness questionnaire, actigraphy, and a paper-and-pencil sleep diary.  The 214 

Morningness/Eveningness questionnaire (32) is a 19-item questionnaire that assesses 215 

respondent’s circadian preference, sleep-wake pattern for activity, and morning and evening 216 

alertness; and was used as an initial screener wherein participants needed to score between 31 217 

and 69 to remain in the study, thus avoiding extremes in “morningness” or “eveningness”.  218 

Participants wore an actigraphy monitor (Actical, Philips Respironics, Murrysville, Pennsylvania 219 

or an equivalent) for five days prior to the blister induction (AS) or live-in portion of the study 220 

(SR and SR+) to verify that they slept between 7 and 9 hours per night. Participants also 221 

maintained a paper-based sleep diary, in which they recorded the time they went to bed (with the 222 

intent to sleep) and the time they awoke.  223 

Assessment of Life Stressors 224 

 225 
The Perceived Stress Scale (16) was administered to all participants either within a week 226 

of the blister induction (AS) or upon arriving to the lab for the live-in portion of the study (SR 227 

and SR+) to assess life stressors in the previous month.  This scale is a reliable and valid 14-228 

item, widely used self-report measure of perceived stress, wherein respondents rate the 229 

stressfulness of their life during the previous month. The items are answered on a 0 (never) to 4 230 

(very) scale, with higher sum scores indicating greater perceived stress.    231 

Anthropometrics 232 

 233 
Standing height was measured at baseline, in duplicate using an anthropometer (Seritex, 234 

Inc., Carlstadt, NJ or similar).  Body weight was measured in shorts, t-shirt, stocking feet at 235 

baseline and either the morning of the blister induction (AS) or each day of the live-in portion of 236 



the study (SR and SR+) using a calibrated electronic scale (Tanita WB-110A Class III, Tokyo, 237 

Japan). 238 

Suction Blister Induction and Fluid Sampling 239 

 240 
Venous blood was drawn from the forearm on the morning of the blister induction, and 241 

~3.0 mL of serum was used to prepare an autologous fluid mixture to be used in the suction 242 

blister model (30% serum and 70% Hanks (+) buffer solution).  CRP was assessed from serum 243 

and analyzed in duplicate using Multiplex bead based on Luminex® technology.   244 

Suction blisters were induced according to previously described methods (72).  Briefly, a 245 

vacuum pressure was applied to a polycarbonate template on the forearm to form a series of eight 246 

blisters (Figure 2).  Blister fluid was subsequently sampled and the top of each blister was 247 

removed.  Polycarbonate wells (Figure 2) were secured over the blisters and the autologous fluid 248 

mixture, which acts as a soluble chemotactic substance (90), was syringed into the polycarbonate 249 

wells.  The concentration of inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α, MIP-1α and 250 

MIP-1β) was assessed by removing fluid from distinct wells at 4-h (AS, SR and SR+), 7-h (AS, 251 

SR and SR+), 24-h (AS, SR and SR+), and 48-h (SR and SR+) following blister formation. 252 

Transepidermal Water Loss (TEWL) to Assess Skin Barrier Restoration  253 

 254 
 The time to skin barrier restoration was assessed by measuring TEWL from individual 255 

blisters using the VapoMeter (Delfin Technologies Inc., Stamford, CT). Beginning ~24-h after 256 

blister formation, TEWL was measured twice each morning, from the lower four wound sites 257 

and an adjacent, non-wounded, control site, and the paired measurements were averaged.  If 258 

values were not within 10% of each other, a third measurement was taken and the two closest 259 

values were averaged.  The TEWL measurements from wound number six were used to assess 260 

skin barrier restoration, since the majority of participants developed a blister at this location (i.e., 261 



all participants in AS and SR, and 18 of 20 participants in SR+) and our prior work indicated that 262 

blister size was consistent between participants at this site.  A ‘Standard of Recovery’ was 263 

established using the TEWL values ~24 hours after blister induction (39):   264 

[TEWL measurement from wound site – TEWL measurement from control site (both measured ~24 hrs 265 

after blister induction)] x 0.10 266 

The skin barrier was considered “restored” when a subsequent daily TEWL value (i.e., wound 267 

site measurement minus control site measurement) met or exceeded the ‘Standard of Recovery’. 268 

Participant’s daily TEWL values, from 24 hours post-blistering thru the day they reached the 269 

‘Standard of Recovery’, were then exponentially regressed to better identify the precise moment 270 

of skin barrier restoration. 271 

Additional Research Procedures Applicable Only to Sleep Restricted Participants (SR and SR+) 272 

Participants underwent approximately 72 hours of sleep restriction with 2-h sleep per 273 

night in the laboratory to induce decrements in immune responsiveness and delay skin barrier 274 

restoration, and to identify if additional protein combined with a multi-nutrient beverage could 275 

mitigate these decrements (SR compared to SR+, Figure 1).  Suction blisters were induced after 276 

48-h of the sleep restriction protocol.  The 72-h duration of sleep restriction with limited nightly 277 

sleep was selected based on the somewhat typical wake-restricted sleep that military personnel 278 

encounter during training (9) and combat missions ((49). The sleep-wake pattern in this study is 279 

also relevant to non-military emergency service personnel and medical interns, who may also 280 

encounter short-term scenarios where sleep restriction is unavoidable (5, 79, 85); and, endurance 281 

athletes who may self-impose sleep restriction during short-term, multi-day events (33, 43, 62).  282 

Study participants arrived to the laboratory the day before the sleep restriction period 283 

began, and slept overnight at the laboratory.  During the ~72 hour sleep restriction period, 284 



participants slept only 2 hours per night and engaged in a variety of activities to maintain 285 

wakefulness (e.g., exercise, video games, television, movies), similar to the activities that were 286 

performed by participants in the free-living group that received adequate sleep (AS).  287 

Determination of Total Daily Energy Expenditure 288 

 289 

Total Energy Expenditure (6) during the sleep restriction period was estimated to 290 

determine the level of energy intake required to maintain body weight for each participant during 291 

the nutrition intervention experiment. TEE was estimated from approximate time spent sleeping, 292 

participating in miscellaneous activities (e.g., eating, watching TV, playing video games, 293 

personal care, moving about the dorm area, etc.), and exercise (67).   294 

Physical Activity  295 

 296 
The purpose of including mild to moderate physical activity during the sleep restriction 297 

period was to maintain wakefulness and sustain the participants’ habitual level of energy 298 

expenditure. As such, exercise energy expenditure (EEE; kcals·d-1), derived from exercise recall 299 

interviews and added to the TEE equation, was used to determine the amount of mild to 300 

moderate physical activity that participants performed during the sleep restriction period.  301 

Exercise consisted of treadmill walking, outdoor walking and cycle ergometry.  The American 302 

College of Sports Medicine’s Metabolic Equations for steady state exercise conditions were used 303 

to estimate exercise workloads and subsequent energy expenditure (59).  Trained study staff 304 

confirmed that all physical activity was performed at light intensity (self-reported using the 20-305 

point Borg RPE scale (8)).     306 

Assessment of Dietary Intake 307 

 308 
Intake of omega-3 fatty acid-rich foods, probiotics and other dietary supplements 309 

(including multi-vitamin/minerals) was assessed at baseline by questionnaire, along with oral 310 



antibiotic use; and, participants were asked to refrain from consuming these items for the 311 

duration of the study.  Participants recorded all foods and beverages consumed for 3 days prior to 312 

each sleep restriction period, and for 5 days following each sleep restriction period to quantify 313 

intake of energy and macronutrients, as well as nutrients affecting immune function. Food 314 

records were reviewed daily and finalized for accuracy by Registered Dietitians, and analyzed 315 

for nutrient content using computer-based nutrient analysis software (Food Processor, ESHA 316 

Research, Salem, OR).  317 

Study Diet  318 

 319 
During sleep restriction period (Figure 1): Participants consumed measured and 320 

provided diets designed to maintain energy balance. Study diets included commercially-available 321 

food items and water was allowed ad libitum. Diets were designed by Registered Dietitians to 322 

provide either ~0.8 grams·kg-1 body weight·day-1, which is the low end of the MDRI (SR) or 323 

~1.5 grams·kg-1 body weight·day-1, which is the higher end of the MDRI (SR+). The higher level 324 

of protein was chosen for the intervention diet based on general recommendations for immune-325 

supporting diets, since proteins are a vital component of collagen synthesis (11, 54, 58, 77). 326 

Some of the food items provided by the study diet were chemically analyzed (Covance Inc., or 327 

equivalent) to confirm their composition of macronutrients and select micronutrients (i.e., 328 

vitamin C, vitamin D, n-3 fatty acids and/or zinc). Registered Dietitians prepared each 329 

participant’s daily meals and snacks, and food consumption was monitored by trained study 330 

staff.  Dietary intake was analyzed for nutrient content using computer-based nutrient analysis 331 

software (Food Processor, ESHA Research, Salem, OR). Participants were instructed to refrain 332 

from caffeine three days prior to the sleep restriction period to avoid the effects of caffeine 333 



withdrawal during the sleep restriction period, and were not allowed to consume any other food 334 

or beverages other than those provided.  335 

Post-sleep restriction period (Days 4-8, Figure 1): upon leaving the lab on Day 4, 336 

participants were instructed to consume a protein-controlled (SR: ~0.8 grams·kg-1 body 337 

weight·day-1; SR+: 1.5 grams·kg-1 body weight·day-1), ad libitum diet. Participants were given 338 

detailed instructions regarding protein-containing food, beverages, and portion sizes to meet the 339 

study’s protein guidelines, and food records were reviewed daily by trained Registered Dietitians 340 

to confirm compliance.    341 

Multi-Nutrient Beverage 342 

 343 

 The multi-nutrient beverage contained L-arginine (20 g·d-1), L-glutamine (30 g·d-1), 344 

omega-3 fatty acids (1 g·d-1), zinc sulfate (24 mg·d-1), vitamin D3 (800 IU·d-1) and vitamin C 345 

(400 mg·d-1).  Content of the multi-nutrient beverage was based on formulas used in clinical 346 

settings which have shown benefits related to post-surgical infectious complications (10, 17, 18, 347 

71, 73) and wound healing disorders (22).  Nutrients were purchased from DSM Nutrition 348 

Products (Parsippany, NJ).  The nutrient “pre-mix” (containing the arginine, glutamine, zinc, 349 

vitamin D and vitamin C) was added to an artificially sweetened, commercially available 350 

beverage powder using good manufacturing practices (4C Totally Light, Brooklyn, NY); and, the 351 

omega-3s (i.e., 500 mg docosahexaenoic acid, 300 mg eicosapentaenoic acid and 150 mg short-352 

chain omega-3 fatty acids) were packaged separately. The placebo beverage was composed of 353 

the same commercially-available, artificially sweetened beverage powder (4C Totally Light, 354 

Brooklyn, NY) and 0.03 g of naringen and 0.004 g of quinine (both from Penta Manufacturing, 355 

Livingston, NJ) to impart a slightly bitter taste to match the taste of the ‘multi-nutrient’ beverage. 356 

The powders were stored in the refrigerator (omega-3 powder) or freezer (‘multi-nutrient’ and 357 



placebo beverage powders); and, were added to containers and reconstituted with water prior to 358 

consumption.  The beverages were consumed twice per day during the sleep restriction period 359 

(Days 1-3) and the post-sleep restriction period (Days 4-8). Study team members witnessed 360 

beverage consumption during the sleep restriction period and on each morning of the post-sleep 361 

restriction period; and, participants consumed the beverage, on their own, each afternoon of the 362 

post-sleep restriction period and returned the empty container the following morning.    363 

Sleepiness and Cognition  364 

 365 
 Cognitive decrements subsequent to even short duration sleep loss or restriction have been 366 

well documented (45, 48, 88). In the present study, a short battery of cognitive tests focusing on 367 

executive control, working memory, and visual sustained attention was administered to quantify 368 

functional impacts performance (cognitive in this case)during the imposed sleep restriction. The 369 

Stanford Sleepiness Scale was administered immediately before the cognitive test battery to 370 

assess alertness.  Participants completed the following cognitive tests at baseline (Day 1) and at 371 

approximately 0100 each morning of the sleep restriction period (Day 2 – Day 4): 372 

 Go/No-go, a task module from the Automated Neuropsychological Assessment Metrics, 373 

Version 4, General Neuropsychological Screening Battery (13, 14), is a computer-assisted 374 

test of sustained attention and response control, wherein the participant must respond to a 375 

specific stimulus (i.e., pressing a button as quickly as possible when an “X” appears on the 376 

computer screen) and inhibit that action in response to other stimuli (i.e., no response when 377 

an “O” appears on the computer screen).  A total of 120 trials were presented, including 96 378 

target and 24 distracter stimuli, in a pseudorandom order.  379 

 Psychomotor Vigilance Task (PVT) measured the speed with which the participant responded 380 

to a visual stimulus by pressing a button as soon as the light appears (i.e., light appears 381 



randomly every few seconds for ~5–10 minutes) (19).  Reaction time and accuracy were the 382 

main outcome measures.    383 

 A visual n-back test was administered to evaluate attention and working memory capacity. 384 

This computer-based task, adapted from Kirchner (41) and McAllister and colleagues (53), 385 

was developed for use in this study from the simple continuous performance task module of 386 

the ANAM4 GNS battery (CSRC, 2013a,b). Participants were required to determine whether 387 

each number in a sequence matched a specified target number (0-back) or a number 388 

presented immediately prior (1-back) or 2 stimuli back (2-back) in the sequence. Numbers 389 

were presented at a rate of 1 every 3 seconds, with a total of 20 numbers presented in each n-390 

back condition. Response accuracy and reaction times were recorded. 391 

Systemic Markers of Inflammation and Immune function 392 

 393 
Whole blood was drawn from a forearm vein daily, upon waking, during the live-in 394 

portion of the study.  Cortisol, growth hormone, CRP, and cytokines were assessed from serum. 395 

Cytokines and CRP were measured, in duplicate, using Multiplex bead based on Luminex® 396 

technology.  Cortisol and growth hormone were measured using the Immulite immunoassay 397 

system (Siemens Healthcare, Erlangen, Germany).  Vitamin C and 25-hydroxyvitamin D were 398 

measured from blood on the morning of day 1 before sleep restriction to determine background 399 

micronutrient status, using colorimetric (BioVision, San Francisco, CA) and enzyme linked 400 

immunosorbent assay kits (R&D Systems, Minneapolis, MN) respectively.   401 

Leukocyte Migration of Wound Fluid 402 

 In a subset of SR+ (n = 4) and SR (n = 8) participants, suction blister wound exudate cells 403 

were characterized via flow cytometry.  Following centrifugation of autologous wound fluid, 404 

exudate cells were re-suspended in FACS buffer (DPBS/2mM EDTA + 10% heat inactivated 405 

FBS) and incubated with Human Fc Receptor Binding Inhibitor (eBioscience) to reduce non-406 



specific binding.  Characteristic light scattering properties and fluorescently labeled cell surface 407 

markers were used to quantify monocytes and polymorphonuclear cells (PMN; see Figure 3 for 408 

gating strategy). The following anti-human primary fluorophore-conjugated antibodies, along 409 

with isotype controls, were used to characterize blister wound exudate leukocytes:  FITC-410 

conjugated anti-human HLA-DR, PE-conjugated anti-human CD16, PerCP-conjugated anti-411 

human CD14, and APC-conjugated anti-human CD45 (all from eBioscience). Flow cytometry 412 

was performed on an Accuri C6 (BD Biosciences), and data were analyzed and figures generated 413 

using Cytobank (44). 414 

Marksmanship Tasks 415 

 416 

Marksmanship tasks were conducted on the EST 2000 (Cubic Corporation, Orlando, FL), 417 

with the session beginning at 3 h, 20h, 44 h and 68 h into sleep restriction and required 418 

approximately 90-120 minutes to complete.  The EST 2000 is a small arms training system 419 

providing visual, auditory, and physical sensations mimicking the firing characteristics of an 420 

actual weapon via an M4 carbine adapted for use on the system.  The modified weapon emits a 421 

Class 1 laser at a screen 30 m away from participants, providing information back to the trainer.  422 

Two marksmanship tasks were implemented: a friend vs. foe discrimination task with 423 

varying levels of cognitive load and a modified Army Record Fire task.  Each friend vs. foe task 424 

consisted of four, 16 min challenges: two low cognitive load (LCL) and two high cognitive load 425 

(HCL) challenges, each consisting of 80 targets and 8 cues.  Twenty red or black E-silhouette 426 

targets appeared randomly at each of four locations (150 and 250 m; slightly left or right off 427 

center in each firing lane); ratios of black:red and friend:foe targets were presented 1:1.  Targets 428 

were presented for 5 sec (dropping if hit, staying up for full 5 sec if missed) with a variable inter-429 

target delay of 3-15 sec.  At the start of each challenge, a brief (3 sec) visual cue indicated the 430 



color criteria (red or black) that designated a target as friend or foe.  For the LCL challenge, the 431 

color criteria remained constant with the black and red targets presented alternately.  For the 432 

HCL challenge, targets were presented randomly, and the color criteria changed 8 times per 433 

challenge with a visual cue presentation.  LCL and HCL challenges alternated, the starting 434 

challenge type was randomly chosen, and each challenge was followed by a 5 min rest period. 435 

Up to four participants were tested simultaneously with the same challenge, but the 436 

meaning of cues differed for each firing lane depending on instructions given to individuals.  437 

Participants used a standing foxhole supported firing position and fired as quickly and accurately 438 

as possible at foes, taking only one shot per target, and pressed a button located directly above 439 

the trigger well as quickly as possible for friends.  When a sequence of two consecutive same 440 

colored targets followed by two consecutive targets of the other color appeared in the HCL 441 

challenge, a button press was required on the fourth target, or high value target (HVT), in 442 

addition to the standard shot or button press.  After each response, participants re-positioned 443 

weapons to the center of the firing lane, interrupted the sight picture, and waited for the next 444 

target to appear. 445 

  The EST 2000 recorded the latency to shoot at a foe or press the button for a friend and 446 

the accuracy of hits.  The exact location of a bullet strike from the center of mass (Cartesian 447 

coordinates: 0,0) on the target was recorded, which allowed for calculating additional measures 448 

such as distance to the center of mass (DCM) and shot group tightness.  The percentage of 449 

correct decisions (shot for a foe and button press for a friendly target) and number of HVTs 450 

detected/falsely detected was also calculated. 451 

 Following the friend vs. foe discrimination tasks, participants completed an Army Record 452 

Fire marksmanship protocol (United States, 2003) adapted to EST 2000 at USARIEM.  Similar 453 



to a live fire Record Fire qualification task, participants engaged targets (50-300 m) from prone 454 

supported (20 targets), prone unsupported (10 targets), and kneeling (10 targets) firing positions. 455 

The number of hits and misses for each target were recorded.   456 

Markers of gut barrier damage 457 

 Archived serum derived from fasted morning samples collected by forearm venipuncture 458 

on the first (day 1) and final (day 4) mornings of each live-in phase were used to assess markers 459 

of gut barrier damage.  Claudin-3 is a transmembrane tight junction protein involved in 460 

regulation of paracellular intestinal permeability, and is considered a marker of intestinal tight 461 

junction damage and paracellular intestinal barrier integrity (29).  Claudin-3 was measured by 462 

ELISA according to manufacturer instructions (MyBiosource).  Intestinal fatty acid binding 463 

protein (IFABP) is a small cytosolic protein expressed in enterocytes of the jejunum, and to a 464 

lesser extent the colon.  IFABP is released into circulation upon enterocyte membrane integrity 465 

loss, and is considered a marker of intestinal epithelial cell damage (29). IFABP was measured 466 

by ELISA according to manufacturer instructions (Hycult Biotech).  Lipopolysaccharide (LPS) 467 

binding protein (LBP) is an acute phase protein released from the liver in response to bacterial 468 

LPS (70), and is considered an indirect marker of bacterial LPS translocation from the gut 469 

lumen.   LBP was measured by ELISA according to manufacturer instructions (Cloud Clone 470 

Corp).     471 

Calculations and Statistical Analyses 472 

The primary dependent variable of interest was skin barrier restoration rate, and 473 

secondary variables of interest were cytokine concentrations from the wound fluid. Mean and 474 

variance data from our prior work (72) were used for sample size calculations, and indicated that 475 

20 participants were required to detect a 0.75 day (or 15%) difference in skin barrier restoration 476 



time between groups (α = 0.05, power = 0.80).  Sample size calculations using 24-hr 477 

concentrations of IL-8, IL-6 and TNF-α from our prior work (72) indicated that ~20 participants 478 

were required to detect a ~40% difference in cytokine response (α = 0.05, power = 0.80).   479 

Area-under-the curve (AUC) values were calculated for each participant using data 480 

obtained from autologous wound fluid sampled following blister formation (i.e., wound 481 

cytokines concentrations). Briefly, “Area under the curve with respect to the increase” (AUCi) 482 

(64) represents the total AUCi for all measurements with consideration for the time difference 483 

between each measurement and their distance from the baseline value.  In the few cases (n = 3) 484 

when no autologous wound fluid was available at the designated time-point(s) due to leakage 485 

from the well(s), the group mean was substituted in place of the missing value to calculate AUCi.  486 

In cases where values were either more than 3 SDs from the mean or below the limits of 487 

detection, either the group mean or zeros, respectively, were substituted to calculate AUCi.   488 

Statistical analyses were conducted using the IBM SPSS statistical package version 19.0 489 

(IBM Inc., Armonk, New York) and SAS version 9.4 (SAS Institute Inc., Cary, NC).  Data were 490 

examined for outliers both quantitatively and graphically, and normal distribution of data was 491 

confirmed via the Shapiro-Wilk test.  Data that were not normally distributed (i.e., cytokine 492 

serum and wound concentrations, CRP and GH) were log transformed (log10).  Repeated 493 

measures analysis of variance (ANOVA) was used to assess changes in body weight over time. 494 

Independent samples t-test was used to determine differences between AS and SR, and SR and 495 

SR+ for skin barrier restoration rate, cytokine concentrations from post-blister wound fluid 496 

(AUCs), and baseline measures (i.e., MEQ and PSS scores, CRP, 25-hydroxyvitamin D status, 497 

vitamin C status, and average sleep). The study was not powered to compare AS versus SR+, 498 

because this comparison was not of interest. Additionally, linear mixed models with first order 499 



autoregressive covariance type was used to determine main effects of time and condition, and 500 

their interactive effects with regard to cytokine concentrations in blister wound fluid and serum, 501 

and GH, CRP and GH concentrations. Effects of time, multi-nutrient supplementation, and their 502 

interaction on markers of gut barrier damage were analyzed using linear mixed models adjusted 503 

for age and BMI. For all models, when significant main effects or interactions were observed, all 504 

possible t-tests were conducted and the Bonferroni correction was used to control the familywise 505 

error rate. Lastly, for the exploratory analyses to identify predictors of skin barrier recovery, 506 

multivariate linear regressions were used in models with all wound cytokines simultaneously, all 507 

serum biomarkers simultaneously, or all dietary variables simultaneously (plus energy intake), 508 

adjusting for age, BMI, study group, race and ethnicity.  Results are presented as mean (± SD), 509 

unless otherwise noted.  A two-tailed P value of 0.05 was considered statistically significant.     510 

RESULTS 511 

Baseline Demographics & Measurements 512 

Baseline demographics are presented in Table 1, e.g., eighty-seven percent of study 513 

participants were male (n = 52) with an average age of 22 years. The dietary intake survey 514 

confirmed that participants did not habitually consume omega-3 fatty acid-rich foods, probiotics 515 

or other dietary supplements prohibited by the study protocol.  There were no significant 516 

differences in any baseline characteristics or measures between AS and SR or SR and SR+, with 517 

the exception of higher 25-hydroxyvitamin D concentrations for SR compared to SR+ (Table 1).  518 

Effect of sleep restriction on local inflammation and skin barrier restoration (AS versus 519 

SR) 520 
 521 

Time to skin barrier restoration was significantly higher for SR (5.0 ± 0.9 days) compared 522 

to AS (4.2 ± 0.9 days, P=0.02). The analysis was repeated without females, to ensure that the sex 523 

imbalance between groups wasn’t a confounder, and results were unchanged (AS, 4.1 ± 1.0, and 524 



SR, 5.0 ± 0.9, P=0.02).  These results confirmed the usefulness of the suction blister model for 525 

detecting immune function decrements in response to sleep restriction and controlled living 526 

conditions.  This finding provided rationale supporting Phase 2, to determine if a nutrition 527 

intervention could mitigate immune function decrements in response to sleep restriction under 528 

controlled living conditions.  Cytokine values from 13% of the 288 wells (AS and SR combined) 529 

were excluded from calculations, since less than 70% of autologous serum added to the 530 

chambers immediately post-blistering was recovered from these wells at the follow-on time-531 

points.  Wound fluid concentrations of IL-6, IL-8, MIP-1α, MIP-1β and TNF-α significantly 532 

increased over time for both AS and SR (Figure 4).  A group x time interaction was observed for 533 

IL-8 (P<0.0001), wherein the mean concentration was higher for SR compared to AS at 7-h 534 

(log10 2.6 ± 0.4 pg·mL-1 and log10 2.3_± 0.3 pg·mL-1, respectively, P=0.004); and, IL-8 535 

concentration over the total sampling period (i.e., AUCilog10) was significantly higher for AS 536 

compared to SR (5.1 ± 0.2 pg·mL-1 and 4.9 ± 0.2 pg·mL-1, respectively, P=0.03).  No other 537 

significant between group differences were detected (Figure 4). 538 

Effect of a multi-nutrient beverage on cognition, local and systemic inflammation, skin 539 

barrier restoration, marksmanship and gut barrier function in response to sleep restriction 540 

(SR versus SR+) 541 
 542 

Anthropometrics, Energy Expenditure & Dietary Intake   543 

 544 
Average TEE for SR and SR+ was 2860 ± 410 kcals·d-1 and 2820 ± 610 kcals·d-1, 545 

respectively (P=0.8), with EEE contributing 470 ± 170 kcals·d-1 and 460 ± 200 kcals·d-1 to 546 

TDEE, respectively (P=0.9).  Body weight was not significantly different over time within or 547 

between groups during the sleep restriction period (P=0.5 and P=0.6, respectively), indicating 548 

that participants were in energy balance.  There were no differences in dietary intake between SR 549 

and SR+ prior to the 72-hr live-in periods (Table 2). Per the study design, dietary intake of 550 



protein (i.e., total grams, grams per kg body weight and percent of total energy intake), arginine, 551 

glutamine, omega-3 fatty acids, vitamin D, vitamin C and zinc were significantly higher for SR+, 552 

compared to SR, during and after the sleep restriction period (Table 2). Vitamin A was also 553 

significantly higher for SR+ compared to SR ([mean difference ± SE] 512 ± 91 IU, P < 0.0001), 554 

during the sleep restriction period, due to higher intake of cheese products in the prescribed study 555 

diet.  Daily energy intake was [mean difference ± SE] 585 ± 146 kcals lower for SR compared to 556 

SR+ during the 5-d follow-up period (P<0.0001).     557 

Multi-nutrient Beverage  558 

 559 

Compliance with the beverage prescription during and after the sleep restriction period 560 

was 100% and 99.7%, respectively (i.e., one participant in SR+ reportedly forgot to consume the 561 

beverage on the afternoon of Day 7, thus consumed only half of the daily dose of nutrients 562 

provided by the beverage on that particular day).   563 

Sleepiness and Cognition  564 

 565 

For both SR and SR+, participants were more significantly alert on day 1 compared to all 566 

other time points, as indicated by Stanford Sleepiness Scale (Day 1: SR, 1.7 ± 0.6 and SR+: 1.5 ± 567 

0.6; Day 2: SR, 3.2 ± 1.1 and SR+: 3.0 ± 1.4; Day 3: SR, 3.8 ± 1.4 and SR+: 3.9 ± 1.3; Day 4: 568 

SR, 4.0 ± 1.6 and SR+: 3.4 ± 1.5) (Figure 5).  There was no significant between group 569 

differences in terms of alertness scores (Figure 5).  570 

Results for the go/no-go task indicated that participants in SR were significantly less 571 

accurate the last night of sleep restriction compared to all other time points (Day 1: 91.1 ± 4.2%; 572 

Day 2: 91.8 ± 5.2%; Day 3: 93.5 ± 2.5%; Day 4: 86.2 ± 9.8%) (Figure 5). There was a trend for a 573 

group-by-time interaction (P=0.06), wherein SR+ had (or tended to have) better accuracy 574 

compared to SR on the first ([mean difference ± SEM] 3.4 ± 1.8%, P=0.07), second ([mean 575 



difference ± SEM] 3.3 ± 1.8%, P=0.07) and third ([mean difference ± SEM] 5.7 ± 1.8%, 576 

P=0.002) night of the sleep restriction period (Figure 5). There was no significant group or time 577 

effects with regard to mean response time (data not shown).  578 

With regard to the PVT, reaction time was faster on day 1 compared to all other time 579 

points for SR and SR+, p<0.01 (Figure 6). A group effect indicated that reaction time was faster 580 

for SR compared to SR+ ([mean difference ± SEM] -0.2 ± 0.01 seconds, P=0.01), but no group-581 

by-time interactions were noted. Participants were generally more accurate at baseline and on the 582 

first night of the sleep restriction period compared to later time-points (Figure 6), with no 583 

between group differences or group-by-time interactions detected.   584 

Accuracy and response time for 0-back, 1-back and 2-back conditions of the N-back task 585 

are shown in (Figure 7).  Independent of group, significant time effects for the 0-back 586 

(p<0.0001) and 2-back (P=0.03) tasks indicated that accuracy was lower the last night of the 587 

sleep restriction period ([mean estimate ± SEM] 0-back: 97.4 ± 0.4% and 2-back: 71.3 ± 2.9%) 588 

compared to baseline ([mean estimate ± SEM] 0-back: 99.9 ± 0.4%, p<0.0001 and 2-back: 80.6 589 

± 2.9%, P=0.04) and the first night of sleep restriction ([mean estimate ± SEM] 0-back: 99.2 ± 590 

0.4%, P=0.013 and 2-back: 79.7 ± 2.9%, P=0.03).  With regard to response time, a significant 591 

time effect (P=0.04) indicated that participants tended to be slower for the 1-back task on the last 592 

night of sleep restriction ([mean estimate ± SEM] 635 ± 19 milliseconds) compared to baseline 593 

([mean estimate ± SEM] 570 ± 19 milliseconds, P=0.06) and the first night of sleep restriction 594 

([mean estimate ± SEM] 574 ± 19 milliseconds, P=0.06). There were no significant between 595 

group differences with regard to 0-back, 1-back or 2-back accuracy or response time.  596 

Systemic Markers of Inflammation and Immune function 597 

 598 



For both SR and SR+, serum GH concentrations on day 1 were significantly lower, and 599 

circulating cortisol concentrations were significantly higher, compared to all other time points 600 

Figure 8.  No within group changes over time were detected for CRP.  A group x time 601 

interaction (p<0.0001) was detected for cortisol which tended to be higher, or was significantly 602 

higher, in SR compared to SR+ on the morning of day 2 ([mean difference ± SEM] 2.1 ± 1.2 603 

µg/dL and, P=0.07) and day 4 ([mean difference ± SEM] 4.7 ± 1.2 µg/dL, p<0.0001), 604 

respectively Figure 8.          605 

There were no within group changes for SR and SR+ in terms of IL-1β, IL-6, IL-8, MIP-606 

1α and MIP-1β serum concentrations; however, TNF- α serum concentration significantly 607 

declined from day 3 (log10 1.253 pg·mL-1) to day 4 (log10 1.156 pg·mL-1, P=0.002) for SR 608 

(Figure 8).  Although there was a main group effect (p<0.05), wherein serum concentrations 609 

were higher for SR compared to SR+ with regard to IL-8 (Days 1-4, p < 0.0001), TNFα (Day 1 610 

and Day 2, P=0.05; and, Day 3, P=0.03), and MIP-1β (Days 1-4, p < 0.0001), there were no 611 

significant group-by-time interactions for any of the measured serum cytokines (Figure 8).   612 

Immune response of autologous wound fluid 613 

 614 

Cytokine values from 10% of the 320 wells (SR and SR+ combined) were excluded from 615 

calculations, since less than 70% of autologous serum added to the chambers immediately post-616 

blistering was recovered from these wells at the follow-on time-points.  Autologous wound fluid 617 

concentrations of IL-1β, IL-6, IL-8, MIP-1α, MIP-1β and TNF-α significantly increased over 618 

time for both SR and SR+, with significant time x group differences (Figure 9).  Additionally, 619 

AUCi concentrations were higher for SR+ compared to SR with regard to IL-6 (log10, 5.7 ± 0.3 620 

pg·mL-1 and 5.3 ± 0.3 pg·mL-1, respectively, p < 0.0001) and IL-8 (log10, 6.3 ± 0.5 pg·mL-1 and 621 

5.6 ± 0.1 pg·mL-1, respectively, p < 0.0001) (Figure 9).  Results were not changed when baseline 622 



25-hydroxyvitamin D concentrations, vitamin A intake during the sleep restriction period or 623 

energy intake during the 5-day recovery period were used as covariates. 624 

In order to characterize blister wound exudate cells, flow cytometry was performed on 625 

cells isolated from the autologous wound fluid of a subset of SR+ (n = 4) and SR (n = 8) 626 

participants.  During a pilot study, we were unable to isolate an adequate number of lymphocytes 627 

and macrophages from wound fluid (data not presented); thus, our analyses were restricted to 628 

monocytes and PMNs.  The contribution of monocytes (i.e., CD14+CD16-) to the total pool of 629 

CD45+ lymphocytes decreased significantly over time and was similar between SR+ and SR 630 

groups (Figure 10).  As expected, PMNs were the predominant blister wound exudate cell type; 631 

however, significant differences were observed with respect to PMN CD16 expression between 632 

SR+ and SR groups.  At 48hrs, the proportion or CD16hi PMNs was significantly reduced in SR+ 633 

participants compared to SR, whereas the proportion CD16lo was significantly increased (Figure 634 

10).     635 

Skin Barrier Restoration  636 

 637 

Time to skin barrier restoration was not significantly different between SR (5.0 ± 0.9) and 638 

SR+ (4.6 ± 0.8 days), P=0.18; and, results were unchanged when baseline 25-hydroxyvitamin D 639 

concentrations, vitamin A intake during the sleep restriction period or energy intake during the 5-640 

day recovery period were used as covariates.    641 

Predictors of Skin Barrier Restoration 642 

 643 

Descriptive statistics are presented in terms of healing time tertiles, i.e., the time it took 644 

for skin barrier to restore to 90% (Table 3).  In linear regression models of potential nutritional 645 

predictors of healing time, adjusted for age, BMI, race, ethnicity, energy intake and study group, 646 

omega-3 fatty acid (beta ±SE per g/d: 0.73 ±0.32 days, P=0.03) and zinc (per g/d: 0.10 ±0.05 647 



days, P=0.04] intakes were associated with longer healing time; and, protein intake (per g/d: -648 

0.02 ±0.01 days, P=0.01) was associated with shorter healing time (Table 4). Calcium was 649 

subsequently removed from the model, since it was highly and significantly correlated with zinc, 650 

vitamin D and protein (Pearson r = 0.7-0.8); and both omega-3 and protein intake associations 651 

remained, while the association of zinc was attenuated: omega-3 intake: beta ± SE per g/d: 0.70 ± 652 

0.33, P=0.04; protein intake per g/d: -0.02 ± 0.01, P=0.01. 653 

Incremental area under the curve values (AUCi) of IL-8 (beta ± SE per logged pg/mL: -654 

1.50 ± 0.43, P<0.001) and MIP-1b (per logged pg/mL: -1.42 ± 0.50, P=0.01) sampled from the 655 

wound sites were associated with shorter healing time (Table 5). None of the serum biomarkers 656 

were significantly associated with healing time (Table 6).   657 

Marksmanship 658 

Performance on marksmanship tasks changed during the testing period and, depending on 659 

the measurement, was affected by task condition, time, and/or challenge order. Changes in 660 

reaction times to engage a target were dependent on whether participants were responding to 661 

friends or foes. Main effects of time (F3,42 = 11.51, P < 0.001) revealed trigger pull reaction 662 

times when engaging foe targets slowed by average by 8% across each of the test periods relative 663 

to the initial testing period (Figure 11). In contrast to the latency to shoot a foe, there were 664 

significant main effects of task condition (F1,14 = 22.02, P < 0.001), challenge order (F1,14 = 665 

10.65, P=0.0057), and time (F3,42 = 15.15, P < 0.001) on the latency to signal friendly targets 666 

(Figure 12). Participants were ~16% faster to signal friendly targets during the LCL condition 667 

compared to the HCL condition and, collapsed across condition, ~37% faster during the 3 h time 668 

point compared to the 68 h time point. Post hoc analysis revealed reaction times to signal 669 

friendly targets were significantly slower at the 44 and 68 h time points compared to the 3 h time 670 



point as well as the 68 h time point compared to the 20 h time point. Collapsed across challenge 671 

condition and time, the main effect of challenge order revealed that participants were ~6% faster 672 

during the first task administration compared to the second. 673 

 Correctly discriminating between targets (shots for foe or button presses for friendly 674 

targets) and identifying the HVT also changed throughout the study. A significant time by 675 

challenge order interaction (F3,42 = 4.22, P=0.011) showed participants generally responded less 676 

frequently to targets over time. Omitted responses were, therefore, removed when calculating the 677 

percentage of correct responses to targets. With these omissions excluded, a significant 678 

interaction between task condition and time (F3,42 = 5.32, P=0.0034; Figure 13) was found, and a 679 

post hoc analysis revealed that under the HCL, but not LCL, condition, participants made 680 

significantly more errors (shooting a friendly target and pressing the button for a foe target) at 681 

the 44 and 68 h test points compared to the 3 and 20 h test points. For percentage of correct HVT 682 

detections (Figure 13), there were significant effects of challenge order (F1,14 = 6.034, P=0.028) 683 

and time (F3,42 = 16.79, P < 0.001). Participants successfully detected a higher percentage of 684 

HVTs during the first HCL challenge (54% ± 6.5) each day compared to the second (45% ± 5.6).  685 

In addition, HVT detections were higher at the 3 h time point compared to all other time points 686 

and at the 20 h time point compared to the 68 h time point. There were no significant effects on 687 

the number of HVT false detections. 688 

 Analysis of the qualification scores on the Army Record Fire task revealed a main effect 689 

of time (F3,24 = 2.87, P=0.047), with scores generally improving over time.  Post hoc analysis 690 

did not show a significant change at any particular assessment point; however, qualification 691 

scores tended to be higher at 44 h compared to 3 h into the study.  On the friend vs. foe task, the 692 

percentage of foe targets accurately hit did not change over time or by challenge order but was 693 



affected by task condition (F1,14 = 11.49, P=0.0044; Figure 13), such that accuracy was higher 694 

during the LCL condition (77% ± 2) compared to the HCL condition (75% ± 2).  There were no 695 

significant effects for shot placement, including average shot DCM, average shot group DCM, or 696 

the average radius of the shot group. 697 

Gut barrier damage 698 

 No main effects of time, multi-nutrient supplementation or their interaction on any 699 

marker of gut barrier damage was documented (Table 7). 700 

 701 
DISCUSSION 702 

In this investigation we confirmed our initial hypothesis that skin barrier restoration was 703 

delayed for participants who underwent 72-h of sleep restriction with 2-h of sleep per night in a  704 

laboratory compared to participants who were adequately rested, with some degradation in 705 

cytokine response at the wound site during the initial phases of wound healing.  Our second 706 

hypothesis was partially confirmed, wherein concentrations of pro-inflammatory cytokines at the 707 

wound site were higher during the initial phase of wound healing for participants who consumed 708 

habitual protein intake and a twice daily multi-nutrient beverage compared to participants who 709 

received a lower protein intake with placebo beverage during and after 72-h of sleep restriction 710 

with 2 h sleep per night. However, within the sleep-restricted groups we were unable to detect 711 

differences in skin barrier recovery in response to the nutrition intervention.  712 

Expectedly, participants were tired and demonstrated degraded performance on measures 713 

of executive control, working memory, and visual sustained attention in response to the imposed 714 

sleep restriction, which is consistent with the literature (45, 48, 88).  The finding that sleep 715 

restriction in a laboratory environment delayed skin barrier recovery, compared to free-living, 716 

adequately rested participants, is consistent with studies that investigated the impact of chronic 717 



and acute psychological stress on wound healing (3, 28, 39, 40, 52). Further, Altemus et al. 718 

(2001) suggested that skin barrier function was perturbed after 42-h of total sleep deprivation, 719 

however, authors only measured skin barrier recovery within 3 hours following tape stripping 720 

(i.e., up to 75% recovery). Using the suction blister model, Kiecolt-Glaser et al. (2005) reported 721 

that skin barrier restoration was delayed by ~1 day following a 30-min adverse social interaction 722 

(i.e., verbal disagreement), compared to a 30-min positive social interaction, with their spouse. 723 

Roy et al. (2005) similarly reported that college examination stress delayed suction blister wound 724 

healing time by ~2 days. Taken together, findings from the current study and past investigations 725 

confirm that stressors, including sleep restriction, ultimately delay healing of an experimental 726 

wound.  That decrements in wound IL-8 concentration over the total sampling period in the 727 

present study were lower in participants who underwent sleep restriction in a laboratory 728 

compared to free-living participants who were adequately rested suggests that the delayed wound 729 

healing in response to sleep restriction in a laboratory may be attributed to perturbations in the 730 

inflammatory response during the critical early phases of wound healing, as has been previously 731 

suggested by studies of psychological stress (27, 39).  However, decrements in the later phases of 732 

the wound healing cascade may also be responsible for delayed healing after sleep restriction 733 

which can be assessed in future trials by sampling wound fluid beyond 48-h post-blistering.      734 

We did not detect any changes in circulating markers of immune function over the course 735 

of the sleep restriction period, compared to baseline concentrations, with the exception of a 736 

decline in serum TNF-α concentration from day 3 to day 4 of the sleep restriction period. Of 737 

note, circulating cytokines on the morning of “day 1” may not have been an accurate depiction of 738 

“baseline” concentrations given that participants spent the previous night in the laboratory (i.e., 739 

an unaccustomed environment) and were potentially anxious about the impending sleep 740 



restriction and related study activities. In support, the baseline concentrations of IL-1β and TNF-741 

a in the current study were more than three-fold higher than the pre-sleep restriction values 742 

reported by Altemus et al (2001).  Regardless, acute sleep loss, either partial or total, seems to 743 

produce differential results with regard to the peripheral inflammatory cytokine response with 744 

some studies showing an increased production of pro-inflammatory cytokines (3, 25, 30, 34, 37, 745 

83, 84) and others reporting no change over time (1, 69, 74).  Further, cytokine concentrations 746 

from peripheral blood are thought to provide a ‘snapshot’ of systemic immunity, but may not 747 

reflect local immune responses (27, 39).  748 

We did not detect significant differences in skin barrier recovery in participants who 749 

consumed supplemental nutrients during and after the sleep restriction period compared to those 750 

who received a non-nutritive placebo. The failure of the nutrition intervention to affect skin 751 

barrier recovery was surprising, given the higher concentrations of pro-inflammatory cytokines 752 

at the wound sites during the initial phase of wound healing in participants who received the 753 

nutrition intervention relative to those who received the placebo. There are few studies that have 754 

tested the efficacy of nutrition interventions on wound healing outcomes in healthy adults. 755 

Williams et al. (2002) reported that collagen deposition, as measured by the content of 756 

hydroxyproline in a subcutaneously-placed catheter, was higher in healthy older adults who 757 

consumed a mixture of arginine (7 g), β-hydroxy-β-mthylbutyrate (HMB, 3 g) and glutamine (14 758 

g) versus placebo twice daily for 14 days.  Two other studies supplemented the diets of healthy 759 

younger (~30 years) and older adults (~70 years) with 30 g/d of arginine and demonstrated 760 

higher collagen deposition at an experimental wound site and increased peripheral blood 761 

lymphocyte mitogenesis compared to placebo (4, 42). Those findings lead us to expect that the 762 

nutrition intervention would accelerate skin barrier restoration. However, another published 763 



human study tested the efficacy of a nutrition intervention (i.e., 4 weeks of 764 

eicosapentaenoic/docosahexaenoic polyunsaturated fatty acid, PUFA, supplements) on skin 765 

barrier restoration and authors did not detect a significant difference between the experimental 766 

and placebo group (55). While the sleep restriction did cause delayed healing time in the current 767 

study, the effect size may not have been large enough to allow detection of the effects of the 768 

nutrition intervention.  769 

We observed that under sleep-restriction, the nutrition intervention group experienced 770 

higher IL-6, IL-8 and MIP-1β concentrations at the wound site during healing, compared to the 771 

placebo group, which potentially indicates an enhanced response during the early phases of 772 

wound healing.  These findings are consistent with Martinez et al. (2004) and McDaniel et al. 773 

(2008) who also reported higher cytokine expression at a wound site (i.e., IL-1β, with a trend for 774 

higher IL-6 and TNF-α, concentrations) within 24-h of blistering, with no significant differences 775 

in healing time in non-sleep restricted participants who were either supplemented with PUFA or 776 

placebo for 4 weeks. Although the functional significance of altered local cytokine 777 

concentrations in the present context remains unclear, increased expression of pro-inflammatory 778 

and chemotactic cytokines during the initial phase of wound healing is thought to be 779 

advantageous given their multifaceted roles that are expected to promote healing, e.g., enhancing 780 

phagocytosis, stimulating the migration of keratinocytes at the edges of the wound, promoting 781 

fibroblast chemotaxis and proliferation, and stimulating re-epithelialization, tissue remodeling 782 

and the formation of new blood vessels (21, 68, 87).  Although, the decreased proportion of 783 

CD16+ PMNs in SR+ participants at 48 hrs suggests that neutrophil apoptosis is accelerated in 784 

this group (20), elevated levels of IL-8 may account for this, as IL-8 has previously been shown 785 

to decrease human PMN expression of CD16 (51). Taken together, the somewhat equivocal 786 



findings in the current study (i.e., potential benefits of the nutrition intervention under sleep 787 

restriction conditions were observed at the wound site while no significant effect on skin barrier 788 

restoration was detected) suggest that additional research is warranted to elucidate the functional 789 

implications of enhancing local immune responses.        790 

Contrary to expectations, we did not detect an increase in cortisol concentrations or 791 

decline in growth hormone over the course of the sleep restriction period, as has generally been 792 

demonstrated in the literature in response to acute sleep restriction (7, 26, 35, 69). Similar to the 793 

current study’s results, Altemus et al. (2001) reported no change in cortisol in response to 42-h of 794 

total sleep deprivation compared to baseline levels (6.1 ± 0.9 and 5.5 ± 0.9 µg/dL, respectively). 795 

Interestingly, participants had lower serum GH and higher serum cortisol concentrations on the 796 

first morning of the study, prior to the sleep restriction intervention, compared to subsequent 797 

time-points during the sleep restriction period. This is somewhat consistent with results reported 798 

by Vgontzas et al. (2004), who observed lower peak cortisol secretion after sleep restriction 799 

compared to baseline. Since normal variations in hormone concentrations (e.g., cortisol) occur 800 

across a 24-h period, it would be advantageous to sample circulating levels at multiple time-801 

points throughout the day to further characterize the response and also to measure 802 

catecholamines. Additionally, measuring these hormones on the first morning of the study may 803 

not represent “baseline” concentrations as previously mentioned herein.  Indeed, baseline cortisol 804 

concentrations in the present study were almost three-fold higher compared to the pre-sleep 805 

restriction values reported by Altemus et al. (2001).  Of note, we detected lower cortisol 806 

concentrations after 24- and 72-h hours of sleep restriction in participants receiving the nutrition 807 

intervention compared to controls, i.e., cortisol declined in all participants after the initial day 1 808 

sampling, but declined more for subjects who consumed additional protein and the multi-nutrient 809 



beverage during and after sleep restriction, indicating the nutrition intervention seems to have 810 

modulated the cortisol response under sleep-restriction conditions.   811 

Our exploratory analyses investigating predictors of skin barrier restoration indicated that 812 

omega-3 and protein intake may influence wound healing time under sleep-restriction conditions. 813 

That we observed that habitual omega-3 fatty acid intake was positively associated with longer 814 

healing time was somewhat surprising, given the role of omega-3 fatty acid intake in mitigating 815 

the inflammatory response.  However, this exploratory analysis was limited by the small sample 816 

size and additional cases are needed to confirm these findings. Additionally, our analyses 817 

indicated that wound healing time may be predicted by wound cytokines, but not serum 818 

biomarkers. These findings allude to the functional implications of enhancing local immune 819 

responses. The fact that serum biomarkers weren’t predictive of skin barrier restoration was 820 

unsurprising, given prior observations that cytokine concentrations from peripheral blood may 821 

not reflect local immune responses (27, 39). Additional analyses with a larger data set is 822 

warranted, which ultimately may inform future studies assessing nutritional countermeasures to 823 

stress-related effects on healing and provide further evidence of mechanisms related to skin 824 

barrier recovery.  825 

With respect to marksmanship performance, results suggest that over a 72 h period of 826 

obtaining only 2 h of sleep per night, Soldiers take significantly longer to make decisions, make 827 

the wrong decisions regarding the identity of friends or foes, and do not believe their 828 

performance is suffering. The longer latencies to fire observed in this study are consistent with 829 

previous investigations (46, 57, 81). The degree to which reaction times degraded, however, 830 

were not similar between friend or foe targets, such that latencies increased by only ~16% when 831 

engaging foe targets but by ~37% when engaging friendly targets. It is unknown if this result is 832 



due to differential decision-making between friend and foe targets, differences in motor 833 

sequences and responses between the shot and the button press (for example, longer engagement 834 

latencies to shoot a target may compensate for slower decision-making), or another factor. 835 

Determining how participants made their decision in future studies may elucidate this question. 836 

In contrast to reaction times, shooting accuracy and precision changed little throughout 837 

the duration of the study, which conflicts with other studies that show decreased marksmanship 838 

accuracy following sleep loss (31, 57). One explanation is that previous studies incorporated 839 

additional forms of stress into their protocols, such as intense physical and/or mental training 840 

outside of the testing period.  These additive stressors may have degraded marksmanship 841 

performance to a greater extent than sleep loss alone. Second, marksmanship methods vary 842 

largely among studies. In contrast to the current study, which required participants to take a 843 

relatively large number of shots over a short period of time, previous studies required 844 

significantly fewer shots within a given time frame (31, 57). Third, given that participants in this 845 

study were relatively new to military service, repeated exposures to the marksmanship tasks may 846 

have improved performance simply through practice. Such improvements may explain the 847 

modest increase in Record Fire scores observed in this study. Practice effects may also have 848 

tempered the extent to which marksmanship latencies and friend versus foe discrimination 849 

declined with sleep loss. Future research should continue to explore the relationship between 850 

sleep and marksmanship, and identify potential mitigation strategies for the deleterious effects of 851 

sleep loss. 852 

Contrary to our hypothesis, sleep restriction did not alter circulating concentrations of gut 853 

damage markers.  Sleep restriction has been shown to activate a canonical stress response as 854 

evidenced by increased HPA-axis activity and cortisol release, although this response has not 855 



been observed in all studies (65), including this study.  This stress response is thought to 856 

contribute to intestinal cell injury and cell death, ultimately leading to inflammation and 857 

disruption of the gut barrier (2, 23, 80).  In support, sleep deprivation and circadian disruption 858 

have been shown to increase intestinal permeability and facilitate bacterial translocation into 859 

systemic circulation in murine models (24, 65, 80).  The absence of a stress (i.e., cortisol) 860 

response in this study may suggest that the study environment did not induce a stress response of 861 

sufficient magnitude to degrade gut barrier integrity during sleep restriction.  Alternately, 862 

claudin-3 and IFABP may not be sensitive enough markers to detect subtle damage to the gut 863 

barrier.  Future studies should determine whether functional measures such as dual sugar 864 

absorption tests may be more sensitive to effects of sleep restriction on gut barrier function.  865 

Finally, the absence of changes in gut damage markers likely prevented detection of any effect of 866 

multi-nutrient supplementation on gut barrier integrity despite evidence that several nutrients 867 

including the glutamine, vitamins A, C and D, zinc, and omega-3 fatty acids have all been 868 

independently shown to positively impact gut barrier health in prior studies (47, 56, 61, 78, 86).     869 

This study presents limitations that should be considered in terms of data interpretation 870 

and planning of future trials. We cannot exclude the possibility that differences in housing 871 

conditions between AS and SR contributed to the observed differences between these groups.  872 

However, any stressors experienced during the free-living AS phase would be expected to bias 873 

results towards the null and living in the laboratory during the sleep restriction period was part of 874 

the stressor in Phase 1 of the study. Additionally, greater-than-expected variability between 875 

participants may have decreased our ability to detect differences between the sleep restriction 876 

groups in terms of skin barrier restoration.  Additionally, both groups reportedly consumed ~1.5 877 

g protein per kg body weight leading up to the sleep restriction period, which was consistent with 878 



the prescribed protein intake for SR+ but higher than the prescribed protein intake of SR, thus 879 

potentially confounding the results. Therefore, including a protein-controlled diet prior to the 880 

intervention to habituate liver enzymes to the prescribed protein intake is prudent. Lastly, while 881 

energy intake was different between the sleep restriction groups during the five day follow-up 882 

period, the estimated energy imbalance was < 100 kcals·d-1 for three of the five days. Further, it 883 

is unlikely that a mild energy deficit for the remaining two days affected wound healing (77) and 884 

results were unchanged when energy intake was included as a covariate in the analysis. Despite 885 

these shortcomings, this study provided valuable insight into the local pro-inflammatory 886 

response and tissue remodeling processes, and nutritional interventions to support the innate 887 

immune system, during and after sleep restriction.     888 

CONCLUSION 889 

 Herein, we demonstrate that the suction blister model is an effective model for testing the 890 

immune response to stressors and for testing the efficacy of countermeasures to mitigate immune 891 

decrements (e.g., nutrition interventions) during stress. Using this model we showed that 72-h of 892 

sleep restriction with 2-h sleep per night in a laboratory delays skin barrier recovery, thus 893 

underscoring the importance of adequate sleep when feasible. However, when adequate sleep is 894 

not feasible (e.g., military personnel in training/combat, emergency service personnel, ultra-895 

endurance athletic competitions), these findings suggest that maintaining protein intake at the 896 

higher end of the MDRIs in combination with a multi-nutrient beverage (i.e., containing 897 

arginine, glutamine, zinc, vitamin C, vitamin D and omega-3 fatty acids) may attenuate some 898 

decrements in local immune responses observed during sleep restriction relative to a lower 899 

protein intake without nutrient supplementation, albeit without affecting skin barrier recovery. 900 

Additional research is needed to elucidate the functional implications of this improved local 901 



immune response.  902 
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Table 1. Baseline Characteristics for Study Participants 

Baseline Data 

Group 
Adequate 
Sleep (n = 
16) 

72-h Sleep
Restriction (n
= 20)

72-h Sleep
Restriction
with nutrition
intervention
(n = 20)

P-value
AS vs
SR

P-value
SR vs
SR+

[Mean ± SD] 
Age 23.2 ± 4.7 21.2 ± 3.9 21.0 ± 3.2 0.17 0.83 
Gender 

Male 12 20 20 
Female 4 0 0 

Race 
Hispanic/Latino 2 3 8 

Not 
Hispanic/Latino 

14 17 20 

Ethnicity 
Caucasian 14 13 16 

Black or African 
American 

2 4 1 

Other 0 3 3 
BMI (kg/m2) 25.7 ± 3.7 26.5 ± 3.8 26.2 ± 3.8 0.51 0.78 
MEQ (total 
score)1 

56.2 ± 6.4 52.7 ± 3.7 54.7 ± 4.2 0.06 0.11 

Sleep 
(hrs/night)2 

7.99 ± 0.50 7.71 ± 0.67 7.64 ± 0.50 0.18 0.71 

PSS (total 
score)3 

28.4 ± 3.1 29.2 ± 5.8 29.8 ± 4.6 0.62 0.72 

C-reactive
proteinlog10
(mg/L)

0.1 ± 0.6 0.4 ± 0.4  0.2 ± 0.5 0.39 0.68 

Vitamin C 
(umol/L) 

N/A 28.9 ± 15.4 37.4 ± 14.6 N/A 0.84 

25-
hydroxyvitamin 
D (ng/ml) 

N/A 24.7 ± 6.7 19.2 ± 6.1 N/A 0.01 

1Morningness Eveningness Questionnaire 
2Hours of sleep per actigraphy monitoring 
3Perceived Stress Scale 



Table 2. Diet characteristics of participants who underwent 72-h sleep restriction without (SR) and with (SR+) multi-nutrient beverage 

Independent samples t-test was used to determine differences in nutrient intake between SR and SR+ during each study period (i.e., indicated in the column headings); *indicates 
significant difference from SR, p<0.05; **indicates significant difference from SR, p<0.0001. ANOVA was used to determine within group differences between each study period 
(e.g., live-in and post-study). Similar superscript letters indicate significant within group differences for each nutrient (p<0.05). 

72-h Sleep Restriction (SR)
(n = 19) 

72-h Sleep Restriction with nutrition intervention (SR+)
(n = 20) 

Pre-study Live-in Post-study Live-in and post-
study combined 

Pre-study Live-in Post-study Live-in and post-
study combined 

Mean ± SD  Mean ± SD 
Energy (kcals) 2715±682ab 2860±416cd 1881±419ace 2248±333bde 3004±825a 2817±594b 2466±499**ab 2598±494* 

Protein (g) 119±39abc 65±9a 72±12b 70±10c 134±48 120±23** 121±22** 121±22** 

Protein (g·kg-1 
body weight) 1.5±0.5abc 0.8±0.0a 0.9±0.1b 0.9±0.1c 1.7±0.5 1.5±0.0** 1.5±0.1** 1.5±0.1** 

Protein (% of 
total energy) 17.8±5.2ab 9.1±0.5acd 16.0±3.3ce 13.4±2.1bde 17.9±4.0a 17.1±0.9**b 20.7±4.2**ab 19.4±2.6** 

CHO (g) 320±98ab 470±73acd 248±78bce 332±60de 346±102ab 414±96acd 273±65bc 326±68d 

CHO (% of total 
energy) 47.1±8.3abc 65.6±2.2ade 51.8±7.2bdf 57.0±4.4cef 46.9±8.2a 58.5±2.0**abc 43.4±4.6**bd 49.1±2.9**cd 

Fat (g) 107±35abc 82±13ad 66±14bd 72.2±9.8c 116±37ab 79±14ac 98±23**c 91±18**b 

Fat (% of total 
energy) 35.2±5.7ab 25.9±2.3acd 32.2±5.4c 29.9±3.6bd 34.1±5.0a 25.4±1.8abc 35.7±3.6*bd 31.8±2.5cd 

Arginine (g) 3.8±2.3ab 3.1±0.4c 2.1±0.7ac 2.5±0.6b 4.5±2.4abc 23.4±0.6**a 23.3±1.3**b 23.4±0.9**c 

Glutamine (g) 11.7±6.4a 14.0±2.2bc 6.6±2.2ab 9.4±2.0c 15.0±8.3abc 45.8±2.7**ad 40.6±3.9**bd 42.6±3.1**c 

Omega 3 (g) 1.0±0.6ab 1.8±0.4acd 0.5±0.3bce 1.0±0.2de 1.3±0.6abc 2.3±0.2**ade 1.7±0.3**bd 1.9±0.2**ce 

Vit A (IU) 6096±6941 1829±265a 6393±4436a 4682±2784 9849±13008a 2341±312**a 6517±6069 4951±3820 

Vit D (IU) 143.0±99.1abc 11.3±8.0a 58.5±48.1b 40.8±30.7c 200.9±146.3abc 815.2±4.8**ade 951.2±99.9**bd 900.2±62.8**ce 

Vit C (mg) 134.2±113.2a 67.7±39.4a 110.4±94.4 94.4±59.4 123.0±93.0abc 448.0±36.4**a 460.4±46.3**b 455.8±35.5**c 

Zinc (mg) 10.0±4.8abc 6.5±1.2a 5.3±1.8b 5.8±1.5c 11.5±6.5abc 31.0±1.0**a 32.3±2.3**b 31.8±1.6**c 



Table 3. Unadjusted means of characteristics 

Healing Time Tertiles 
Characteristic T1 T2 T3 P trend 
N 12 13 13 
Healing Time, d 3.9 (0.1) 4.7 (0.1) 5.8 (0.1) 0.00 
Age (years) 23.2 (1.0) 21.0 (0.9) 19.6 (0.9) 0.01 
Average sleep prior to sleep 
restriction  447.0 (10.1) 470.0 (9.7) 467.9 (9.7) 0.15 
BMI (kg/m2) 27.2 (1.1) 26.3 (1.1) 25.5 (1.1) 0.30 
Body weight (kg) 84.4 (3.8) 79.8 (3.7) 76.7 (3.7) 0.15 
Education, % 0.41 

High school 41.7 61.5 53.9 
Some college 33.3 30.8 38.5 
Associate degree 25.0 0.0 7.7 
Master degree 0.0 7.7 0.0 

Race, % white 66.7 69.2 76.9 0.84 
Hispanic, % 25.0 23.1 30.8 0.90 
Perceived stress scale scores 
(pre-study) 29.1 (1.6) 30.2 (1.5) 29.3 (1.5) 0.93 

Pre-Study Diet (3-day average) 
Calcium (mg) 1095.7 (134.7) 841.6 (129.4) 756.0 (129.4) 0.08 
Carbohydrates (g) 343.3 (29.7) 306.5 (28.6) 343.2 (28.6) 0.98 
Carbohydrates (% of total 
energy intake) 44.2 (2.4) 47.6 (2.3) 48.4 (2.3) 0.20 
Fat (g) 121.0 (10.6) 101.8 (10.2) 113.1 (10.2) 0.62 
Fat (% of total energy intake) 35.5 (1.5) 33.0 (1.5) 36.3 (1.5) 0.69 
Energy intake (kcals) 3082.3 (224.9) 2663.5 (216.1) 2819.8 (216.1) 0.42 
Omega 3 fatty acids (g) 1.2 (0.2) 0.9 (0.2) 1.3 (0.2) 0.66 
Protein (g) 148.3 (12.5) 123.2 (12.0) 108.8 (12.0) 0.03 
Protein (g·kg-1) body weight) 1.8 (0.2) 1.5 (0.1) 1.5 (0.1) 0.12 
Protein (% of total energy 
intake) 19.6 (1.3) 18.8 (1.2) 15.4 (1.2) 0.02 
Vitamin A (IU) 14186.2 (2864.0) 6302.3 (2751.6) 3651.8 (2751.6) 0.01 
Vitamin C (mg) 144.6 (28.9) 90.6 (27.8) 136.9 (27.8) 0.88 
Vitamin D (IU) 234.3 (36.1) 164.4 (34.7) 135.0 (34.7) 0.05 
Zinc (mg) 12.2 (1.7) 10.8 (1.6) 9.5 (1.6) 0.26 

Logged Serum Values 
Vitamin C (pg·mL-1, baseline) 1.5 (0.1) 1.6 (0.1) 1.3 (0.1) 0.03 



Vitamin D (pg·mL-1, baseline) 1.3 (0.1) 1.3 (0.1) 1.3 (0.1) 0.92 
Cortisol (pg·mL-1, AUCi) 3.1 (0.1) 2.8 (0.1) 3.1 (0.1) 0.99 
CRP (pg·mL-1, AUCi) 3.06 (0.14) 2.80 (0.14) 3.05 (0.14) 0.99 
GH (pg·mL-1, AUCi) 3.00 (0.14) 2.76 (0.14) 3.02 (0.14) 0.90 
IL-1B (pg·mL-1, AUCi)  1.21 (0.12) 1.54 (0.12) 1.51 (0.12) 0.09 
IL-6 (pg·mL-1, AUCi) 4.01 (0.01) 4.00 (0.01) 4.00 (0.01) 0.11 
IL-8 (pg·mL-1, AUCi) 4.04 (0.02) 4.00 (0.02) 3.98 (0.02) 0.047 
MIP-1a (pg·mL-1, AUCi) 4.01 (0.03) 4.02 (0.02) 3.97 (0.02) 0.23 
MIP-1b (pg·mL-1, AUCi) 4.01 (0.01) 4.00 (0.01) 3.99 (0.01) 0.16 
TNFa (pg·mL-1, AUCi) 4.05 (0.03) 3.99 (0.03) 4.00 (0.03) 0.26 

Logged Wound Values 
IL-1b (AUCi) 4.9 (0.2) 4.7 (0.2) 4.9 (0.2) 0.83 
IL-6 (AUCi) 5.5 (0.1) 5.4 (0.1) 5.5 (0.1) 0.54 
IL-8 (AUCi) 6.1 (0.1) 5.9 (0.1) 5.7 (0.1) 0.02 
MIP-1a (AUCi) 5.2 (0.1) 5.2 (0.1) 5.2 (0.1) 0.65 
MIP-1b (AUCi) 5.3 (0.1) 5.2 (0.1) 5.1 (0.1) 0.19 
TNFa (AUCi) 4.3 (0.1) 4.2 (0.1) 4.4 (0.1) 0.60 

Table 4. Relationship between pre-study diet variables and healing time 

Parameter Estimate SE P 
BMI (kg∙m2) 0.04 0.04 0.32 
Age (yrs) -0.03 0.05 0.54 
Energy (kcals) 0.00 0.00 0.15 
Group A vs. B 
(ref.) 0.59 0.29 0.06 
White vs. Non-
White (ref.) 0.18 0.31 0.56 
Hispanic  vs. 
Non-Hispanic 
(ref.) 0.24 0.32 0.47 
Ca (mg) 0.00 0.00 0.12 
Ω3 Fatty acids 
(g) 0.73 0.32 0.03 
Vit A (IU) 0.00 0.00 0.12 
Vit C (mg) 0.00 0.00 0.49 
Vit D (IU) 0.00 0.00 0.31 
Zinc (mg) 0.10 0.05 0.04 
Protein (g) -0.02 0.01 0.01 
Note: Beta coefficients and standard errors estimate using multivariate linear regression including all variables simultaneously



Parameter Estimate SE P 
BMI (kg∙m2) 0.04 0.04 0.30 
Age (yrs) -0.08 0.04 0.06 
Group A vs. B (ref.) -0.75 0.47 0.12 
White vs. Non-White (ref.) 0.19 0.36 0.60 
Hispanic  vs. Non-Hispanic (ref.) 0.12 0.31 0.70 
LOG IL-1B (AUC)  0.53 0.58 0.37 
LOG IL-6 (AUC) -0.21 0.65 0.75 
LOG IL-8 (AUC) -1.50 0.43 0.00 
LOG MIP-1a (AUC) 1.06 0.63 0.10 
LOG MIP-1B (AUC) -1.42 0.50 0.01 
LOG TNFα (AUC) 0.33 0.80 0.69 

Table 6. Relationship between serum cytokines and healing time 

Parameter Estimate SE P 
Intercept 66.59 98.85 0.51 
BMI -0.02 0.05 0.65 
Age_yrs -0.13 0.06 0.04 
Group A vs B (ref.) 0.61 0.34 0.09 
White vs. Non-White (ref.) 0.39 0.40 0.34 
Hispanic  vs. Non-Hispanic (ref.) 0.41 0.44 0.36 
LOG Cortisol (AUC) -0.39 0.34 0.27 
LOG CRP (AUC) -0.30 0.45 0.51 
LOG GH (AUC) 0.08 0.44 0.85 
LOG IL1B (AUC) -45.49 24.63 0.08 
LOG IL6 (AUC) -1.21 17.16 0.94 
LOG IL8 (AUC) 0.72 2.29 0.75 
LOG MIP1α (AUC) 44.81 22.81 0.06 
LOG MIP1β (AUC) -2.20 6.92 0.75 
LOG TNFα (AUC) -10.92 8.65 0.22 

Table 5. Relationship between wound cytokines and healing time 

Note: Beta coefficients and standard errors estimate using multivariate linear regression including all variables simultaneously

Note: Beta coefficients and standard errors estimate using multivariate linear regression including all variables simultaneously



Table 7. Markers of gut barrier damage. 

SR SR+ P-value1

(n=20) (n=20) Group Time Interaction 
Serum claudin-3 (ng/mL) 0.86 0.60 0.21 
   Day 1 5.3 ± 3.2 4.8 ± 3.1 
   Day 4 4.8 ± 2.9 5.0 ± 3.2 
   ∆ -0.4 [-0.9, -0.02] 0.2 [-0.8, 1.1]
Serum IFABP (pg/mL)2 0.09 0.22 0.41 
   Day 1 974 ± 414 1272 ± 902 
   Day 4 918 ± 509 1204 ± 653 
   ∆ -56 [-248, 135] -69 [-371, 233]
Serum LBP (µg/mL)2 0.24 0.84 0.61 
   Day 1 7.4 ± 2.3 7.0 ± 2.2 
   Day 4 7.7 ± 2.3 6.9 ± 1.9 
   ∆ 0.3 [-0.5, 1.1] -0.1 [-1.4, 1.1]

Values are mean ± SD or mean [95% CI]. IFABP, intestinal fatty acid binding protein; LBP, 
lipopolysaccharide binding protein; SR, sleep restriction; SR+, sleep restriction with multi-
nutrient supplementation. 
1Linear mixed model adjusted for age and BMI.  
2Log10-transformed for analysis. 
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Figure 1. Timeline of activities during adequate sleep (A) and sleep restriction (B) phases.  
1Dietary intervention during sleep restriction consisted of 0.8 g protein/kg body weight plus 
placebo beverage (SR) or 0.8 g protein/kg body weight plus multi-nutrient beverage (SR+). 
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Figure 2. Photographs of the suction blister template, the subsequent blisters and the wound fluid collection template 



Figure 3:  Flow cytometry gating strategy for blister wound exudate cells. 
(A) Cells isolated from autologous wound fluid were first gated according to side and forward scatter.  (B) CD45 was used to identify
exudate leukocytes.  (C) CD45+ cells were then examined for HLA-DR expression.  (D) Monocytes were identified as HLA-
DR+CD16-CD14+.  (E) HLA-DR- polymorphonuclear cells were further characterized by CD16 expression, and classified as either
CD16lo or CD16hi.



4 Hr 7 Hr 24 Hr

L
o

g
(1

0
) 

IL
-6

 (
p

g
/m

L
)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

SR

AS

4 Hr 7 Hr 24 Hr

L
o

g
(1

0
) 

IL
-8

 (
p

g
/m

L
)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

4 Hr 7 Hr 24 Hr

L
o

g
(1

0
) 

T
N

F


 (
p

g
/m

L
)

-1

0

1

2

3

4

4 Hr 7 Hr 24 Hr

L
o

g
(1

0
) 

M
IP

- 
1


 (
p

g
/m

L
)

-1

0

1

2

3

4

5

4 Hr 7 Hr 24 Hr

L
o

g
(1

0
) 

M
IP

- 
1


 (
p

g
/m

L
)

0

1

2

3

4

5

a

a

b

a

b

a

b

a

b

a

b
a

b

a

b

a

b

a

b

a

b

a

a

a
a

1

AUCi, MIP-1

AS SR

0

4

5

6AUCi, IL-8

AS SR

0

5

6

  AUCi, MIP-1

AS SR

0

4

5

6

* *     

AUCi, IL-6

AS SR

0

4

5

6

AUCi, TNF

AS SR

0

4

5 Figure 4: Cytokine response of wound exudate in 
participants who underwent adequate sleep (AS) compared 
to 72-h sleep restriction (SR)

AS = blisters were induced after 5 nights of adequate sleep 
(i.e., 7-9 hours of sleep per night confirmed via activity 
monitors); SR = blisters were induced after 48-h of sleep 
restriction in participants who underwent 72-h of total sleep 
restriction (monitored in laboratory with ~2-h sleep per 
night). a = significantly different from 4 Hr time point 
(p<0.05), b = significantly different from 7 Hr time point 
(p<0.05), 1 = indicates significant between group difference 
at specified time-point (p<0.05). Values are means ± SD.  
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Figure 5: Stanford Sleepiness Scale Scores & Go, No-Go Accuracy  
SR = blisters were induced after 48-h of sleep restriction in participants who underwent 72-h of 
total sleep restriction (monitored in laboratory with ~2-h sleep per night) without additional 
dietary protein or multi-nutrient beverage; SR+ = blisters were induced after 48-h of sleep 
restriction in participants who underwent 72-h of total sleep restriction (monitored in laboratory 
with ~2-h sleep per night) with additional dietary protein or multi-nutrient beverage.   
asignificant within group difference from day 1 
bsignificant within group difference from day 2 
csignificant within group difference from Day 3 
1significantly different from SR+ 
*p < 0.05, **p < 0.0001
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Figure 6: Psychomotor Vigilance Task: Accuracy and Reaction Time 

SR = blisters were induced after 48-h of sleep restriction in participants who underwent 72-h of 
total sleep restriction (monitored in laboratory with ~2-h sleep per night) without additional 
dietary protein or multi-nutrient beverage; SR+ = blisters were induced after 48-h of sleep 
restriction in participants who underwent 72-h of total sleep restriction (monitored in laboratory 
with ~2-h sleep per night) with additional dietary protein or multi-nutrient beverage.  asignificant 
difference within group from day 1, bsignificant difference within group from day 4, *p < 0.05, 
**p < 0.01 
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Figure 7: 0-Back, 1-Back, 2-Back Accuracy and Speed results. 
SR = blisters were induced after 48-h of sleep restriction in participants who underwent 72-h of 
total sleep restriction (monitored in laboratory with ~2-h sleep per night) without additional 
dietary protein or multi-nutrient beverage; SR+ = blisters were induced after 48-h of sleep 
restriction in participants who underwent 72-h of total sleep restriction (monitored in laboratory 
with ~2-h sleep per night) with additional dietary protein or multi-nutrient beverage.   
asignificant difference within SR from day 4 
*p < 0.05, **p < 0.0001 
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Figure 8: Circulating concentrations of serum C-Reactive Protein (CRP) Growth Hormone 
(GH), Cortisol, and Cytokines.  
SR = blisters were induced after 48-h of sleep restriction in participants who underwent 72-h of 
total sleep restriction (monitored in laboratory with ~2-h sleep per night) without additional 
dietary protein or multi-nutrient beverage; SR+ = blisters were induced after 48-h of sleep 
restriction in participants who underwent 72-h of total sleep restriction (monitored in laboratory 
with ~2-h sleep per night) with additional dietary protein or multi-nutrient beverage. Linear 
mixed models with first order autoregressive covariance type was used to determine main effects 
of time and condition, and their interactive effects. When significant main effects or interactions 
were observed, all possible t-tests were conducted and the Bonferroni correction was used to 



control the familywise error rate. Values are means ± SD.asignificant within group difference 
from Day 1 (p<0.05); bsignificant within group difference from day 4 (p<0.05); 1significantly 
different from SR+ (p<0.05), *indicate significant difference between groups at specified time-
points (p <0.0001). 
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Figure 9: Cytokine response of wound exudate in participants who underwent 72-h sleep restriction with and 
without nutrition intervention. 
SR = blisters were induced after 48-h of sleep restriction in participants who underwent 72-h of total sleep 
restriction (monitored in laboratory with ~2-h sleep per night) without additional dietary protein or multi-
nutrient beverage; SR+ = blisters were induced after 48-h of sleep restriction in participants who underwent 72-
h of total sleep restriction (monitored in laboratory with ~2-h sleep per night) with additional dietary protein or 
multi-nutrient beverage.  a = significantly different form 4 Hr time point (p<0.05), b = significantly different 
from 7 Hr time point (p<0.05), c = significantly different from 24 Hr time point (p<0.05), 1 = indicates 
significant between group difference at specified time-point (p<0.05). Linear mixed models with first order 
autoregressive covariance type was used to determine main effects of time and condition, and their interactive 
effects. When significant main effects or interactions were observed, all possible t-tests were conducted and the 
Bonferroni correction was used to control the familywise error rate. Independent samples t-test was used to 
determine differences between groups in terms of total cytokine concentrations (AUCs). Values are means ± 
SD.*indicates significant differences between SR and SR+ in terms of AUCs. 



 

 

Figure 10:  Blister exudate leukocyte populations. 
CD14+CD16- Monocytes and CD16hi and CD16lo polymorphonuclear cells were isolated from 
the autologous wound fluid of SR and SR+ participants (n = 8 and 4, respectively) at 7, 24, and 
48 hours post blister induction.  Data are expressed as percent of total CD45+ population ± SEM.  
*** = p<0.001 for time effect; * = p<0.05 for SR vs. SR+ 
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Figure 11. Time to shoot a foe target and time to signal a friendly target in each of the cognitive load conditions. 

The x-axis is the number of elapsed hours from the start of the experiment. Bars denote standard error. 1Task Condition 
P < 0.05, 2Time P < 0.05, 3Challenge Order, P < .05. Refer to the results section for detailed descriptions of significant 
differences.
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Figure 12. Percentage of foe targets accurately hit and percentage of correct responses (shots at foes 
plus button presses on friends; excluding omitted responses) in each of the cognitive load conditions. 

The x-axis is the number of elapsed hours from the start of the experiment. Bars denote standard error. 
1Task Condition x Time P < .05, 2Task Condition P < .05. Time points that share common letters are 
significantly different from each other. Refer to the results section for detailed descriptions of significant 
differences.
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Figure 13. The percentage of correctly detected high value targets (HVT) during the high cognitive load 
condition. 

The x-axis is the number of elapsed hours from the start of the experiment. Bars denote standard error. Time 
points that share common letters are significantly different from each other at P < .05.
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